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Abstract
A summary of detailed measurements of the field- and temperature-dependent
ac susceptibility, the field-cooled and zero-field cooled magnetization, coercive
field and the resistivity in zero field and applied field of 1.5 T is presented
for hole-doped La1−xMgxMnO3 (0.05� x � 0.4). Measurements of the ac
susceptibility enable estimates of the (effective) critical exponentsγ , β and
δ to be made, which, when combined with the magnetization data, enable a
phase diagram to be proposed. The transport data highlight the suppression
of a metal–insulator transition in these systems with small average A-site
radius. Furthermore, the transport behaviour is shown to be consistent with
the predictions for charge transport by conventional small polaron hopping in
both the paramagneticand ferromagnetic phases, but inconsistent with recent
quantitative predictions for magnetic small polaron-mediated conduction in a
phase-separated picture.

1. Introduction

The behaviour of mixed valent manganese perovskites and manganese containing pyrochlores
has been the subject of much recent study [1, 2]. Such interest has arisen not only due to their
potential application as field sensors, fuel cells, etc, but also because of the fundamental
questions that an explanation of their properties would answer. These systems exhibit
colossal magnetoresistance (CMR) in addition to charge [3] and orbital ordering [4], possible
spontaneous electronic phase separation [5] and magnetic frustration [6]. This behaviour
is exemplified by rich electronic/magnetic phase diagrams which result, for example, from
divalent cation (A) doping of the lanthanum manganites (La1−xAxMnO3), typified by the
La1−xCaxMnO3 system, one of the most extensively studied to date [7].

Here we report magnetic and transport measurements from which a phase diagram of the
La1−xMgxMnO3 system, 0.05� x � 0.4, is proposed. Such a phase diagram summarizes a
detailed study of the effects of the substitution of divalent cations of small ionic radius〈rA〉
0953-8984/01/419349+19$30.00 © 2001 IOP Publishing Ltd Printed in the UK 9349
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at the A-sites in the manganese perovskites. Previous complementary studies of this effect—
particularly in the La2/3−δYδCa1/3MnO3 system through the progressive replacement of La
by Y at constant (optimal) Ca doping [8]—revealed that this caused a progressive depression
of the temperature of the metal–insulator transition. The latter accompanied a monotonic
reduction in the Mn–O–Mn bond angle below its ideal value of 180◦, and associated with
this was a counterintuitive drop in the corresponding hopping integral for Mn eg electrons
between adjacent, O linked, Mn ions (i.e. so-called Mn3+–O–Mn4+ double exchange). An
equivalent, more transparent view of this effect relates it to a reduction in the corresponding
Mn(eg)–O(2pσ) bandwidth with decreasing mean A-site radius〈rA〉 [8, 9]. Such effects
are considerably more dramatic in the La1−xMgxMnO3 system where the metal–insulator
transition is completely suppressed over the entire doping range studied despite the continued
presence of magnetic ordering. Nevertheless, samples with the highest magnetic-ordering
temperature display precursor effects of such a transition as the following results confirm.

2. Experimental details

Samples of nominal composition,x = 0.05, 0.1, 0.2, 0.33 and 0.4, were prepared from
stoichiometric quantities of ultrapure La2O3, MgO (type FM) and MnO2 (99%) using
standard ceramic techniques discussed previously; the particular preheating, grinding and
sintering procedures reported in [10] were adopted to maximize the magnetic-ordering
temperature, an important criterion for applications considerations. Room temperature
x-ray diffraction data using Cu Kα radiation were collected and analysed in the same manner
as reported previously for thex = 0.05 specimen; these indicated a single-phased orthorhombic
structure (Pbnm) with lattice constants(c/

√
2 < a < b) summarized in table 1. The typical

grain size in these polycrystalline specimens is between 30 and 40µm.

Table 1. Lattice parameters, a measure of the distortion (εc), ferromagnetic ordering (Tc) and
paramagnetic Curie temperatures (θ ), Hopkinson maximum susceptibilities (χ (0, TH)) and effective
moments (peff).

Lattice
parameters χ (0, TH)

x (Å) εc =
∣∣∣1 − c

√
2

a + b

∣∣∣ × 103 Tc (K) (emu/g Oe) θ (K) peff (µB)

0.05 a = 5.490(7) 25 147.2 0.13 170 6.2 (4)
b = 5.709(7)
c = 7.725(4)

0.1 5.525(6) 33 154.2 0.34 203 5.2 (7)
5.749(1)
7.714(2)

0.2 5.536(7) 23 139.5 0.22 187 5.1 (0)
5.752(4)
7.801(2)

0.33 5.530(1) 23 118.0 0.09 171 4.4 (0)
5.756(6)
7.801(7)

0.40 5.531(1) 21 114.8 0.16 147 4.6 (0)
5.720(6)
7.789(7)
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Figure 1. The zero-field ac susceptibility,χ (0, T ), corrected for background and demagnetizing
effects, plotted against temperature,T (K), for the x = 0.2 and 0.4 samples. Note the absence of
any anomaly at or below 50 K, and above 170 K, as discussed in the text.

Ac susceptibility, dc magnetization and transport data were collected on samples of
approximate dimensions (1× 1 × 7) mm3. The magnetic data were acquired as a function
of both field and temperature with a Quantum Design PPMS model 6000 system. Neither
the magnetic nor the structural data indicated the presence of impurity phases—particularly
Mn3O4 and self-doped La1−yMnO3 which display marked features, especially in the magnetic
response [11]—confirming that the Mg ions were incorporated substitutionally for La. The
transport measurements were carried out using standard four-probe techniques.

3. Results and discussion

3.1. Magnetic data

3.1.1. General features. In all the samples studied the ac susceptibilityχ(0, T ) increases
rapidly with decreasing temperature as the ferromagnetic-ordering temperatureTc is
approached from above.χ(0, T ) peaks belowTc at the so-called Hopkinson (principal)
maximum, and then decreases essentially monotonically with further decrease in temperature
as shown in figure 1 for thex = 0.2 and 0.4 samples. This behaviour is generally similar to
that reported previously for thex = 0.05 sample [10]. It is reproduced here to emphasize the
absence of a signal arising either from an Mn3O4 impurity phase near 40 K [11] or from mixed
MnMgO phases with lower ordering temperatures [12], a feature necessarily arising from Mg
replacement of Mn rather than La, as well as similar signals resulting from the presence of
self-doped La1−yMnO3 which, for y � 0.03, orders at or above 180 K [11, 13]. The
susceptibility values—corrected for backgroundand demagnetizingeffects—at the Hopkinson
peak,χ(0, TH), are listed in table 1.
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Figure 2. The ac susceptibility,χ (H, T ), of the x = 0.1 specimen, measured in various
superimposed static biasing fields from 200 (top) to 2000 Oe (bottom), plotted against temperature.
The locus of the local critical maxima (the dashed curve) defines the crossover line in the (H–T )
plane (see text).

3.1.2. 0.05 � x � 0.1: nearly ideal behaviour. Figure 2 reproduces the behaviour of the ac
susceptibilityχ(Ha, T ) of thex = 0.1 specimen (corrected for background and demagnetizing
effects) measured in various static (dc) biasing fields,Ha, as a function of temperature near
the ferromagnetic-ordering temperatureTc (both the ac driving field and the static biasing
fields were applied parallel to the longest sample dimension). The static applied fields
progressively suppress the Hopkinson maximum in amplitude and temperature enabling true
critical peaks—shown in figure 2—to be resolved. As discussed previously for a variety
of metallic and semiconducting systems [10, 14, 15], these critical peaks move upward in
temperature away fromTc and decrease in amplitude asHa is increased. The locus of these
peaks in the (H–T ) plane defines the crossover line above which the response is thermally
controlled while below this line it is field-dominated [16]. The general behaviour of this peak
structure can be understood on both the basis of the fluctuation-dissipation theorem [16] and
through numerical calculations for the ferromagnetic phase of Sherrington–Kirkpatrick-like
(SK) models [17]. Since a detailed analysis of the peak behaviour on the basis of the scaling
law equation of state to extract estimates for the usual critical exponentsγ , β and δ has
been thoroughly discussed previously [10, 14, 15, 18]; its principal conclusions alone are
summarized below:

(i) The critical peak amplitudeχ(Hi, Tm) is predicted to exhibit a power-law dependence on
the internal field (Hi = Ha−NM, in the usual notation), namely

χ(Hi, Tm) ∝ H
1/δ−1
i . (1)

Such a relationship enables estimates forδ to be madeindependent of the choice or
knowledge of Tc. This procedure is illustrated in figure 3(a) in which the critical peak
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Figure 3. (a) The amplitude of the critical maximaχm = χ (Hi, Tm), for the x = 0.1 sample
taken directly from figure 2, plotted against the internal fieldHi (in Oe) on a double logarithmic
scale. The straight line drawn confirms the power-law prediction (equation (1)) and its slope yields
δ = 4.76. (b) The magnetizationM of the same sample measured along the critical isotherm and
displayed againstHi on a double logarithmic plot; the straight line drawn yieldsδ = 4.66.

amplitudes taken directly from figure 2 are plotted against the estimated internal field
Hi (the demagnetization factorN being found from the slope of theM versusHa plots
nearTc—the ‘shearing’ curve) on a double logarithmic scale. The ensuing straight line
confirms the power-law prediction of equation (1) and a least-squares fit yields a slope
from which the value forδ is found to be

δ = 4.75± 0.15 200�Hi � 2 kOe.

(ii) This same approach relates the temperatureTm of the critical peak maxima (also taken
directly from figure 2) to the internal field via

Tm − Tc

Tc
= tm ∝ H

(γ+β)−1

i . (2)

A test of this relationship is implemented by first plottingTm againstH(γ+β)−1

i , with
the projected intercept atHi = 0 yielding an estimate1 for Tc of 154.5 (±0.5 K). The
latter is then used to construct a double logarithmic plot oftm versusHi (figure 4). The
least-squares fitted straight line drawn in this figure confirms the power-law prediction of
equation (2) and yields

γ + β = 1.75± 0.10 200� Hi � 2 kOe.

1 This procedure should yield a straight line (provided, of course, that the correct exponent values are utilized), so the
extrapolation is straightforward. Small adjustments�Tc in Tc are admitted (�Tc/Tc 
 2–4× 10− 3) until consistent
sets of plots are achieved. A range of possible exponent values are also tested.
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Figure 4. The (reduced) critical peak temperature,tm, taken from figure 2 for thex = 0.1 specimen
and plotted against the internal fieldHi (in Oe) on a double logarithmic scale. The straight line
drawn confirms the power-law prediction of equation (2) and its slope yieldsγ + β = 1.75.

(iii) Finally, the same value forTc is utilized to test a third power-law prediction, namely

χ(Hi, Tm) ∝ t
−γ
m . (3)

Figure 5—a double logarithmic plot of the critical peak amplitudes (again taken directly
from figure 2) against the reduced peak temperaturetm (also evaluated directly from the
same figure)—summarizes the results of such an analysis. The least-squares fitted line
confirms the power-law relationship and yields

γ = 1.39± 0.05 tm � 3 × 10−2.

These exponent values are, within experimental uncertainty, in agreement with those predicted
by the nearest-neighbour, isotropic three-dimensional Heisenberg model [19] (δ = 4.80,γ +
β = 1.75,γ = 1.38(6)). They are in excellent agreement with those reported earlier for anx
= 0.05 specimen [10], but, more importantly, they indicate that the regime where near-ideal
magnetic behaviour is observed (that is, exponent values not only falling into the universality
class of a well-established model system but also maintained over the entire range of field and
(reduced) temperature examined) extends tox = 0.1 in this system.

The exponentvalue estimates satisfy the Widom relation,γ = β (δ− 1), and theδ estimate
is confirmed by measurements along the critical isotherm

(
M ∝ H

1/δ
i ; δ = 4.66 ± 0.15

for 500 � Hi � 20 kOe, figure 3(b)), although this estimateis dependent not only on the
estimated value forTc but also on the reliability of both resetting and remeasuring at this same
temperature. The scaling law approach also predicts that the susceptibilityχ(h, t) measured
in any fixed field and normalized to its peak value (in the same field) should be a universal
function of the argument of the scaling function, namely

χ(h, t)

χ(h, tm)
∝ t

H
(γ+β)−1

i

.
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Figure 5. The critical peak amplitude,χm = χ (H, Tm), taken directly from figure 2 for thex = 0.1
specimen and plotted against the reduced critical peak temperature,tm, taken from the same figure,
on a double logarithmic scale. The line drawn confirms the power-law prediction of equation (3)
and its slope yieldsγ = 1.39.

The above data on thex = 0.1 specimen collapse onto a single-scaling curve using Heisenberg
model exponents, i.e. (γ + β )− 1 = 0.57. Since a figure of the latter type is similar to that
presented previously for thex = 0.05 sample [10, 20], it is not reproduced here.

3.1.3. 0.1 < x � 0.33: concentration dependent effects. Figures 6 and 7 for thex = 0.2
sample are the equivalent of the last three figures presented above for thex = 0.1 specimen.
A comparison of the two sets of figures enables the effects of increased divalent cation
substitution to be assessed.

Figure 6(a)—a double logarithmic plot of the critical peak maxima,χ(h, tm), against the
internal field,Hi—shows that the power-law prediction of equation (1) is no longer valid over
the entire field range. This plot now exhibits some curvature so that theeffective exponent
δ∗(Hi)—determined from thelocal slope∂ lnχ(Hi, Tm)/∂ lnHi of this plot—decreases with
increasing field. The line drawn in this figure, a least-squares fit of the five points at lowest
field, yields

δ = 4.76± 0.20

suggesting that theasymptotic (low-field) value for this exponent is still consistent with the 3D
Heisenberg model prediction. Fitting the entire data set shown in this figure yields a somewhat
lower effective/average exponent value of

δ∗ = 4.43± 0.23.

Effective exponent values which vary with field and/or temperature have been reported
previously for a variety of metallic and semiconducting systems [14, 21, 22]. An extensive
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Figure 6. (a) As in figure 3(a), for thex = 0.2 sample. The solid line drawn—a fit to the first
five points—yieldsδ = 4.76. See text for further discussion. (b) As in figure 4, for thex = 0.2
specimen.
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Figure 7. As in figure 5, for thex = 0.2 sample.

study of metallic systems has led to the conclusion that this variation is linked to a finite width
in the distribution of exchange interactions coupling the spins (the Mn moments here). Further,
while such ‘disorder’ has been shown to be an irrelevant scaling fieldat the critical point, so
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that theasymptotic (h → 0, t → 0) exponent values remain unchanged (in agreement with
the Harris criterion [23]), theeffective exponent values (forh �= 0, t �= 0) are modified by its
presence. This modification becomes more pronounced as the ratioη = J0/J (whereJ0 is the
mean value/first moment of the exchange distribution and controls the critical temperature,
kBTc = J0, whileJ measures the width/second moment) is reduced towards 1.0 (essentially the
limit of stability of a ferromagnetic ground state). Similar effects can be seen in figures 6(b)
and 7, which also show effective exponent values that vary with field and/or temperature, but
with low field/temperature (i.e. asymptotic) exponent values consistent with the same model
predictions, namely

γ + β = 1.75± 0.15 γ = 1.36± 0.04.

Results for thex = 0.33 sample are very comparable; specifically, they are very similar in the
trends in the effective exponent values to those found above and to earlier measurements [24]
at this composition (x = 0.33), despite the fact that the annealing procedure adopted here has
elevatedTc appreciably.

The physical picture that emerges therefore in this composition range (0.1 � x � 0.33)
is that increased divalent cation substitution for La leads to an increase in the width (J ) of the
distribution of exchange coupling strengths between Mn spins (although the first momentJ0 is
still relatively large, so thatη � 1). In a double exchange picture this has a clearly identifiable
origin—the presence of an inhomogeneousmixed valent (Mn3+, Mn4+) state. Within the latter,
the presence of ferromagnetic Mn3+–Mn4+ double exchange along with both Mn3+–Mn3+ and
Mn4+–Mn4+ (superexchange) interactions of different magnitudes (and probably sign) would
lead to a progressively broadened exchange coupling distribution as the doping level increases.
Nevertheless ferromagnetism predominates so thatη remains>1. (In fact, close examination
of figures 3–5 for thex = 0.1 specimen indicates that such effects might be manifest at the
highest fields used there.) These effects are likely clearer and more pronounced at higher
values forx, as discussed next.

3.1.4. x = 0.4. Figures 8 and 9 summarize the attempts to assess the validity of the power-law
predictions, equations (1)–(3), and the associated exponent values at still higher substitution
levels. This analysis yields the surprising result that while these power laws fit the available
data over the entire field and temperature range examined(200� Hi < 2.2 kOe; 1.6×10−2 �
tm < 8 × 10−2), they do so with (effective) exponent values quite different from those found
at lower values ofx; that is, figures 8 and 9 yield

δ∗ = 3.0 ± 0.1 γ ∗ + β∗ = 1.49± 0.11 γ ∗ = 1.01± 0.06.

These values are close to those predicted in the mean field (γ = 1, γ + β = 3/2, δ = 3), an
unexpected result considering the basic (and short-range) nature of the interactions believed
to be prevalent in these systems—double- and superexchange. Two possibilities present
themselves. First, there is a fundamental change in the character of the basic interaction
mechanism as the divalent cation substitution increases fromx = 0.33 to 0.40. Forx � 0.33
the estimated exponents appear to be consistent with the predictions of thenear-neighbour 3D
Heisenberg model; atx = 0.40 the range of the underlying interactions becomes infinite. Such
a change would indeed be very marked. Alternatively, the trend evident for 0.2� x � 0.33
continues; that is, the ratioη = J0/J continues to fall towards unity, with the extent of
the regime in the (h, t) plane within which trueasymptotic critical behaviour is observed
contractingbelow the field and temperature range accessed by the present experiment. The
current experiment suffers some of the same limitations as conventional estimates of static
critical exponents from magnetization measurements. Neither can be extended to arbitrarily
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Figure 8. (a) As in figure 3(a), for thex = 0.4 sample. Theδ-value is discussed in the main text.
(b) As in figure 4, forx = 0.4.
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Figure 9. As in figure 5, forx = 0.4.

low field/(reduced) temperature due to complications introduced by the presence of regular,
i.e. non-critical, contributions in the total magnetic response [10] (arising typically from
such sources as domain wall motion and/or coherent rotation). The latter limit the current
measurements to internal fields down to 200 Oe (somewhat lower than thosetypically accessed
in the corresponding magnetization based approaches). The true critical behaviour may thus
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prove very difficult to assess. Further, while it is well established thateffective exponent values
tend towards mean-field predictions away from the critical point, such a trend generally occurs
in a more gradual way than that seen above. Specifically, if this second proposal is correct,
the true critical region contracts very rapidly forx > 0.33 in La1−xMgxMnO3, which reflects
a rapid decline in the ratioη = J0/J towards unity as the dopant levels increase above this
composition.

While the present measurements do not differentiate between these two possibilities,
we currently favour the second on the basis of preliminary measurements made at yet
higher values ofx. In particular, ifη � 1.0 one would expect the ground state to evolve
into a spin glass, and for 1.0<η� 5/4 so-called re-entrant (paramagnetic to (longitudinal)
ferromagnetic to (transverse) spin-glass ordering) behaviour is predicted by various model
approaches [14, 25]. The preliminary measurements available for 0.45� x � 0.6 display
featuressuperficially reminiscent of those associated with the second possibility. However,
more detailed investigations currently underway of both the linear and nonlinear responses are
necessary before firm conclusions can be drawn at these compositions. Despite the need for
the latter, the present measurements of the low-field (linear) response indicate the presence of
some unusual features at temperatures belowTc; these are discussed next.

3.1.5. Field-cooled (FC) and zero-field cooled (ZFC) magnetizations. Figures 10(a)–(d)
reproduce the field-cooled (FC) and zero-field cooled (ZFC) magnetizations of the four samples
with x between 0.1 and 0.4 in an applied field of 10 Oe. While the FC data are relatively
featureless, the ZFC branch exhibits a sharp decline at a temperature which decreases with
increasingx (from about 90 K forx = 0.1 to near 60 K forx = 0.4). Figures 11(a)–(d)
display the temperature dependences of the corresponding coercive fields,Hc(T ), deduced
from magnetization curves at various temperatures. In general, the decline in the ZFC branch
corresponds to the temperature at whichHc(T ) displays its most rapid increase (or, at least,
the onset of a rapid increase). These features are very similar to those reported earlier for
the x = 0.05 specimen, and can be modelled using the same Preisach-based approach used
there [10, 26]; such fits are shown representatively for thex = 0.1 sample in figure 10(a).
The principal feature emerging from this type of fit is that these data can be modelled by a
coercive field that exhibits a (model-generated) increase inHc(T ) with decreasing temperature
which is significantly more pronounced than that actually measured; figure 11(a) reproduces
this comparison for thex = 0.1 sample. The features displayed by the data in figures 10 and
11, as well as the characteristics of the modelHc(T ) distribution, warrant further comment.

While the Preisach model provides a good overall representation of these data ([10]
provides such a comparison more comprehensively), this model is phenomenological in
nature [27]. Specifically, it does not identify the underlying mechanism leading to the
rapid decrease (increase) in the ZFC data (Hc(T )) with decreasing temperature. Since this
model has been applied explicitly to hysteretic processes, it might be argued that the features
discussed above are intrinsically technical in nature, that is, they may not be linked with a
true thermodynamic phase change. This contention cannot be demonstrated conclusively by
data currently available. Consequently, a phase diagram for this system has been constructed
(figure 12) which includes the possibility of some characteristic property undergoing significant
modification at a temperature determined by the rapid decline in the ZFC branch of the low-
field magnetization. A candidate for such an effect might be spontaneous (inhomogeneous)
electronic phase separation [5, 28], which is discussed in more detail below. This feature is
shown by the dashed curve in figure 12.

In contrast, the solid curve at higher temperatures designates the ferromagnetic-ordering
temperatures,Tc, estimated in the manner discussed in sections 3.1.2–3.1.4, and associated
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Figure 10. The zero-field cooled (lower) and field-cooled magnetizations M (in emu g−1) measured
in an applied field of 10 Oe and plotted against temperature for (a) x = 0.1, (b) x = 0.2, (c) x =
0.33 and (d) x = 0.4. The solid curve in (a) is a fit to the Preisach model discussed in the text.

unequivocally with a thermodynamic transition. The characteristics of this phase diagram are,
however, incomplete without the following discussion.

3.2. Transport data

Resistivity data in zero field and an applied field of 1.5 T were collected at and below room
temperature. However, since all the specimens examined remained semiconducting, their
continuing increase in resistivity ρ(T ) with decreasing temperature precluded measurements
being carried out below about 90 K. Nevertheless, some qualitative differences in the transport
behaviour of these samples occur with changes in x, which complicates a quantitative analysis
of this behaviour in some cases (specifically for x = 0.1 and 0.2 at temperatures below Tc).
This is illustrated in figures 13 and 14. Figure 13 shows the zero-field resistivity ρ(T ) for the
x = 0.4 specimen; here ρ(T ) increases monotonically with decreasing temperature with no
anomaly in ρ(T ) or its derivative at Tc. Such behaviour is found for x = 0.05 [20], 0.33 and
0.40. Figure 14 reproduces the ρ(T ) versus T behaviour at x = 0.2; here dρ/dT is anomalous,
displaying a maximum in the vicinity of Tc, although this derivative remains negative. The
situation at a true metal–insulator transition, where the transition temperature is frequently
identified as the maximum in this derivative, is that this latter derivative becomes positive. The
results reported here are precursor effects to such a transition. A similar result is observed at
x = 0.1. Such behaviour is reminiscent of the La1−xSrxMnO3 system at similar doping levels
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Figure 11. The measured temperature dependence of the coercive field, Hc(T ) (in Oe), for (a) x =
0.1, (b) x = 0.2, (c) x = 0.33 and (d) x = 0.4. The dashed curves are guides for the eye, while
the open symbols joined by a solid curve are derived from the Preisach model fit to the data in
figure 11(a).

[29]. In this latter system, however, further increases in x (�0.175) cause Tc to increase, with
the associated emergence of a metal–insulator transition. By contrast, in La1−xMgxMnO3,
increasing x beyond 0.1–0.2 causes Tc to fall (Tc is a maximum in this system near x ∼ 0.1),
resulting in the transport behaviour reverting to the monotonic semiconducting response seen
for x< 0.1. This is an intriguing difference with both the La1−xSrxMnO3 and La1−x CaxMnO3
systems, a situation which—as discussed in section 1—likely arises due to influence of the
average A-site radius on the Mn eg–O(2pσ) bandwidth (and the associated Mn–O–Mn bond
angle); an interesting corollary to this might be that an increase in Tc and the appearance of a
metal–insulator transition might be induced by the application of pressure in La1−xMgxMnO3
for 0.1 � x � 0.2.

To turn next to a quantitative analysis of these data, the resistivities ρ(T ) in the
semiconducting regimes both above and below Tc have been fitted to the expression

ρ(T ) = ρ0T
neEa/kBT . (4)

With n = 1 or 3/2, such an expression represents charge transport by polaronic hopping in the
adiabatic or non-adiabatic regime, respectively [30], while equation (4) with n = 1 has also
been proposed recently as a form appropriate for the resistivity of non-metallic phase-separated
manganites containing small magnetic polarons [31]. In the latter, transport is accomplished by
electron transfer between polarons rather than by the field-induced movement of the polaronic
entities themselves. The various scenarios covered by equation (4) with either choice for n thus
appear to include those models currently regarded as most appropriate for discussing transport
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Figure 12. The suggested phase diagram for the La1−xMgxMnO3 system. PI: paramagnetic
insulator; FI: ferromagnetic insulator. The upper temperatures represent the measured Tcs while
the lower ‘boundary’ is discussed in the text.
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behaviour in doped manganese perovskites. (Recent numerical calculations for mixed-phased
manganites [32] can also replicate experimental data but, being non-analytical in form, cannot
be compared directly with current measurements. Furthermore, a recent model [33] in which
phase separation is modelled by co-existing metallic and insulating regions with the resistivity
of the latter given by equation (4) with n = 1 essentially assumed a form for ρ0 consistent
with equation (5), so subsequent discussion is also consistent with it.)

Figure 15 reproduces representative fits of equation (4) to the transport data; figure 15(a)
illustrates a fit of the ‘adiabatic’ form (n = 1) to the x = 0.33 specimen for T > Tc, and figure
15(b) the non-adiabatic form (n = 3/2) to the x = 0.4 sample for T < Tc. The corresponding
least-squares fitted values for ρ0 and the activation energy Ea are provided in table 2. As can
be seen from this table, both forms of equation (4) (i.e. with n = 1 or 3/2) provide equally
acceptable fits to these data, as has been found in other systems [30], however, based on the
internal consistency of model parameters, definite conclusions can be drawn. In the often
utilized adiabatic limit the parameter ρ0 can be written as [30, 34]

ρ0 = kBa

gdx(1 − x)e2"0
. (5)

Here the hopping distance a is identified with the nearest-neighbour Mn separation, gd is
a numerical factor (�1) characterizing the topology of the hopping processes and "0 is an
attempt frequency, identified with a characteristic longitudinal optical phonon frequency, ω0,
in this limit. The factor x(1 − x) reflects (single) site occupation effects (arising from on-site
Coulomb repulsion), x being the hole/Mn4 + fraction. In the non-adiabatic regime the prefactor
is modified slightly, becoming [34]

ρ0 = kBa

x(1 − x)e2"0

1

T 1/2 = kBa

x(1 − x)e2

h̄

J 2

[
4EakB

π

]1/2

(6)
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Figure 15. (a) A fit of the data above Tc for x = 0.33 to the adiabatic formalism (equation (4) with
n = 1). (b) A fit of the data below Tc for x = 0.4 (figure 13) to the non-adiabatic form (equation
(4) with n = 3/2).

Table 2. Parameters deduced from transport data.

T > Tc T < Tc

Adiabatic Non-adiabatic Adiabatic Non-adiabatic
(n = 1) (n = 3/2) (n = 1) (n = 3/2)

Ea ρ0 Ea ρ0 Ea ρ0 Ea ρ0
x (meV) (" cm) SE (meV) (" cm) SE (meV) (" cm) SE (meV) (" cm) SE

0.05 139 7.8 × 0.014 171 3.1 × 0.012 116 1.6 × 0.049 121 9.2 × 0.054

10−6 10−7 10−4 10−6

0.10 176 1.7 × 0.033 186 6.5 × 0.036 — — — — — —

10−4 10−6

0.2 176 2.3 × 0.034 192 6.8 × 0.025 — — — — — —

10−3 10−5

0.33 192 6.5 × 0.004 202 2.8 × 0.004 135 3.6 × 0.017 140 2.1 × 0.021

10−6 10−7 10−4 10−5

0.4 160 1.8 × 0.093 165 9.7 × 0.091 116 1.2 × 0.047 123 8.4 × 0.054

10−5 10−7 10−3 10−5

an expression which is valid when

(i) the electronic coupling factor/transfer matrix element J � polaron formation energy
(related, but not equal, to Ea) and
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(ii) "0 = J 2

h̄

[
π

4EakBT

]1/2

� ω0. (7)

In both situations the characteristic frequency ω0 
 1013–1014 Hz [34, 35].

Finally, in the phase-separation scenario of [31]

ρ0 = kB

128πe2ν0n2(5
(8)

where n is the polaron density (equated with the carrier/hole density induced by doping), ν0 is
a characteristic magnon frequency and ( is a tunnelling length. Rakhmanov et al [31] estimate
ν0 to be on the order of the Fermi energy inside polarons, finding ν0 
 4 × 1013 Hz 
 ω0
(above).

Using equations (6)–(8) with the listed values for ρ0 enables estimates for the parameters
"0 and ( to be made and compared with model assumptions. These estimates are summarized
in table 3. An examination of the values for ( so derived indicate that the phase-separation
model, as formulated by Rakhmanov et al [31], is inconsistent with the current data. These
yield ( < 1 Å, significantly smaller than both the Mn nearest-neighbour separation (∼3.9 Å)
and the inequality on which the model expression is predicated, that is, ( > 2 a0, a0 being
the polaron radius, estimated to be around 10 Å [36]. Further, while transport data were not
acquired below 90 K (for reasons outlined previously), there are no indications of a fall in ρ(T )
at lower temperatures, specifically on crossing the lower (tentative) boundary of the phase
diagram (figure 12).

Table 3. Model parameters.

T > Tc T < Tc

Adiabatic/phase Adiabatic/phase
separation Non-adiabatic separation Non-adiabatic

x "0 ( (Å) "0 |J |(meV) "0 ( (Å) "0 |J | (meV)

0.05 6 × 1013 0.7 9 × 1013 — 3 × 1012 0.4 4 × 1012 11

0.1 1.5 × 1012 0.4 2.5 × 1012 10 — — — —

0.2 6 × 1010 0.2 1011 2.5 — — — —

0.33 1.5 × 1013 0.9 2.5 × 1013 — 3 × 1011 0.2 5 × 1011 3.5

0.4 5 × 1012 0.7 6 × 1012 16 4 × 1010 0.3 1011 1.5

Nevertheless, this boundary has been retained,albeit that it might simply represent changes
in the technical magnetic properties of this system, as comparisons with specific phase-
separation predictions are currently very limited. This has been done despite a recent analysis
[33] suggesting that such a separation might occur above rather than below Tc for the small
〈rA〉 samples studied here. The latter model is consistent, however, with the predominance
of semiconducting behaviour described by equations (4) and (5) in these same small 〈rA〉
samples, as observed here.

As far as polaronic models are concerned, in all those cases where fits to equation (4)
below Tc were possible, the estimates for "0 indicate the applicability of the non-adiabatic
regime ("0 � ω0 ∼ 1013–1014 Hz). In the paramagnetic regime above Tc, however, there is
considerably more variance; for x = 0.05 [20] and 0.33 the adiabatic model appears to apply
("0 > 1013 Hz) whereas for x = 0.1, 0.2 and 0.4 the non-adiabatic limit prevails. Estimates
for the coupling constant J can be made using equation (6) and the tabulated ρ0 and Ea values
when the latter limit applies. Such estimates fall in the range |J|∼ 1.5–15 meV, comparable
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to estimates for LaMnO3, LaCrO3 and O-depleted La0.67Ca0.33MnO3−δ [34, 37] where the
non-adiabatic regime is also operative.

Despite the above differences in the limits applicable to the behaviour of these samples
in the high-temperature paramagnetic regime, the present measurements nevertheless indicate
that polaronic models can describe the behaviour of hole-doped La1−xMgxMnO3 both above
and below Tc. This confirms the consensus of current results for the paramagnetic phase
(where both adiabatic [30] and non-adiabatic [34] regimes have been deemed applicable,
depending on the system), as well as recent analyses on the ferromagnetic, metallic phase
of La1 − xCaxMnO3 films (x = 0.2, 0.25 and 0.4) [38]. What is unusual about the present
measurements, however, is not that the activation energy Ea falls on entering the order phase
(although the inequality |J | � Ea, necessary for the formation of small polarons, remains
valid), but that ρ0 increases sharply (leading to a marked decrease in "0) in the ferromagnetic
phase. This is, of course, necessary if Ea decreases and the resistivity changes smoothly
through Tc, as is the case here. This observation conflicts with the predictions of Emin and Liu
[30] that ferromagnetic ordering should have a minor effect on the magnitude and temperature
dependence of the small polaron jump rate. It has been tentatively proposed [37] that bipolaron
formation—specifically triplet pairing—might cause such an effect, and indeed the observation
of a moderate rather than a colossal magnetoresistance that peaks near Tc (insets in figures
13 and 14) is consistent with such pairing [20, 37]. However, bipolaron formation is still far
from well established in these systems, the response of which continues to pose fundamental
questions half a century after their discovery.
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